## Problem:

Consider the isosceles triangle with base length, b = 16, and legs, L = 17.

By using the Pythagorean theorem it can be seen that the height of the triangle, h = [√](172 [−] 82) = 15, which is one less than the base length.

With b = 272 and L = 305, we get h = 273, which is one more than the base length, and this is the second smallest isosceles triangle with the property that h = b [±] 1.

Find [∑] L for the twelve smallest isosceles triangles for which h = b [±] 1 and b, L are positive integers.

932718654

## Code:The solution may include methods that will be found here: Library.java .

public interface EulerSolution{public String run();}
/*  * Solution to Project Euler problem 38 * By Nayuki Minase *  * http://nayuki.eigenstate.org/page/project-euler-solutions * https://github.com/nayuki/Project-Euler-solutions */import java.util.Arrays;public final class p038 implements EulerSolution {		public static void main(String[] args) {		System.out.println(new p038().run());	}			public String run() {		int max = -1;		for (int n = 2; n <= 9; n++) {			for (int i = 1; i < Library.pow(10, 9 / n); i++) {				String concat = "";				for (int j = 1; j <= n; j++)					concat += i * j;				if (isPandigital(concat))					max = Math.max(Integer.parseInt(concat), max);			}		}		return Integer.toString(max);	}			private static boolean isPandigital(String s) {		if (s.length() != 9)			return false;		char[] temp = s.toCharArray();		Arrays.sort(temp);		return new String(temp).equals("123456789");	}	}