Problem:
The first two consecutive numbers to have two distinct prime factors are:
14 = 2 [×] 7
15 = 3 [×] 5
The first three consecutive numbers to have three distinct prime factors are:
644 = 2² [×] 7 [×] 23
645 = 3 [×] 5 [×] 43
646 = 2 [×] 17 [×] 19.
Find the first four consecutive integers to have four distinct prime factors. What is the first of these numbers?
Solution:
134043
Code:
The solution may include methods that will be found here: Library.java .
public interface EulerSolution{ public String run(); }
/* * Solution to Project Euler problem 47 * By Nayuki Minase * * http://nayuki.eigenstate.org/page/project-euler-solutions * https://github.com/nayuki/Project-Euler-solutions */ public final class p047 implements EulerSolution { public static void main(String[] args) { System.out.println(new p047().run()); } public String run() { for (int i = 2; ; i++) { if ( has4PrimeFactors(i + 0) && has4PrimeFactors(i + 1) && has4PrimeFactors(i + 2) && has4PrimeFactors(i + 3)) return Integer.toString(i); } } private static boolean has4PrimeFactors(int n) { return countDistinctPrimeFactors(n) == 4; } private static int countDistinctPrimeFactors(int n) { int count = 0; for (int i = 2, end = Library.sqrt(n); i <= end; i++) { if (n % i == 0) { do n /= i; while (n % i == 0); count++; end = Library.sqrt(n); } } if (n > 1) count++; return count; } }
No comments :
Post a Comment