Problem:
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.
9 = 7 + 2[×]12
15 = 7 + 2[×]22
21 = 3 + 2[×]32
25 = 7 + 2[×]32
27 = 19 + 2[×]22
33 = 31 + 2[×]12
It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
Solution:
5777
Code:
The solution may include methods that will be found here: Library.java .
public interface EulerSolution{ public String run(); }
/* * Solution to Project Euler problem 46 * By Nayuki Minase * * http://nayuki.eigenstate.org/page/project-euler-solutions * https://github.com/nayuki/Project-Euler-solutions */ public final class p046 implements EulerSolution { public static void main(String[] args) { System.out.println(new p046().run()); } public String run() { for (int i = 2; ; i++) { if (!satisfiesConjecture(i)) return Integer.toString(i); } } private boolean satisfiesConjecture(int n) { if (n % 2 == 0 || isPrime(n)) return true; // Now n is an odd composite number for (int i = 1; i * i * 2 <= n; i++) { if (isPrime(n - i * i * 2)) return true; } return false; } private boolean[] isPrime = {}; private boolean isPrime(int n) { if (n >= isPrime.length) isPrime = Library.listPrimality(n * 2); return isPrime[n]; } }
No comments :
Post a Comment