Problem:
Take the number 192 and multiply it by each of 1, 2, and 3:
192 [×] 1 = 192
192 [×] 2 = 384
192 [×] 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n [>] 1?
Solution:
932718654
Code:
The solution may include methods that will be found here: Library.java .
public interface EulerSolution{
public String run();
}
/*
* Solution to Project Euler problem 38
* By Nayuki Minase
*
* http://nayuki.eigenstate.org/page/project-euler-solutions
* https://github.com/nayuki/Project-Euler-solutions
*/
import java.util.Arrays;
public final class p038 implements EulerSolution {
public static void main(String[] args) {
System.out.println(new p038().run());
}
public String run() {
int max = -1;
for (int n = 2; n <= 9; n++) {
for (int i = 1; i < Library.pow(10, 9 / n); i++) {
String concat = "";
for (int j = 1; j <= n; j++)
concat += i * j;
if (isPandigital(concat))
max = Math.max(Integer.parseInt(concat), max);
}
}
return Integer.toString(max);
}
private static boolean isPandigital(String s) {
if (s.length() != 9)
return false;
char[] temp = s.toCharArray();
Arrays.sort(temp);
return new String(temp).equals("123456789");
}
}
No comments :
Post a Comment