Project Euler > Problem 138 > Special isosceles triangles (Java Solution)

Problem:

Consider the isosceles triangle with base length, b = 16, and legs, L = 17.

By using the Pythagorean theorem it can be seen that the height of the triangle, h = [√](172 [−] 82) = 15, which is one less than the base length.

With b = 272 and L = 305, we get h = 273, which is one more than the base length, and this is the second smallest isosceles triangle with the property that h = b [±] 1.

Find [∑] L for the twelve smallest isosceles triangles for which h = b [±] 1 and b, L are positive integers.


Solution:

932718654

Code:
The solution may include methods that will be found here: Library.java .

public interface EulerSolution{

public String run();

}
/* 
* Solution to Project Euler problem 38
* By Nayuki Minase
*
* http://nayuki.eigenstate.org/page/project-euler-solutions
* https://github.com/nayuki/Project-Euler-solutions
*/

import java.util.Arrays;


public final class p038 implements EulerSolution {

public static void main(String[] args) {
System.out.println(new p038().run());
}


public String run() {
int max = -1;
for (int n = 2; n <= 9; n++) {
for (int i = 1; i < Library.pow(10, 9 / n); i++) {
String concat = "";
for (int j = 1; j <= n; j++)
concat += i * j;
if (isPandigital(concat))
max = Math.max(Integer.parseInt(concat), max);
}
}
return Integer.toString(max);
}


private static boolean isPandigital(String s) {
if (s.length() != 9)
return false;
char[] temp = s.toCharArray();
Arrays.sort(temp);
return new String(temp).equals("123456789");
}

}

No comments:

Post a Comment